Improving Forest Growth Estimates Using a Bayesian Network Approach

نویسنده

  • Y. T. Mustafa
چکیده

Estimating the contribution of forests to carbon sequestration is commonly done by applying forest growth models. Such models inherently use field observations, such as leaf area index (LAI), whereas relevant information is also available from remotely sensed images. The purpose of this study is to improve the LAI estimated from the physiological principles predicting growth (3-PG) model by combining its output with LAI derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery. A Bayesian network (BN) approach is proposed to take care of the different structure of the inaccuracies in the two data sources. It addresses the bias in the 3-PG model and the noise of the ASTER images. Moreover, the EM algorithm is introduced into BN to estimate missing the LAI ASTER data, since they are not available for long time series due to the atmospheric conditions. This paper shows that the outputs obtained with the BN were more accurate than the 3-PG estimate, as the root mean square error reduces to 0.46, and the relative error to 5.86%. We conclude that the EM-algorithm within a BN can adequately handle missing LAI ASTER values, and BNs can improve the estimation of LAI values. Ultimately, this method may be used as a predicting model of LAI values, and handling the missing data of ASTER images time series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improve Estimation and Operation of Optimal Power Flow(OPF) Using Bayesian Neural Network

The future of development and design is impossible without study of Power Flow(PF), exigency the system outcomes load growth, necessity add generators, transformers and power lines in  power system. The urgency for Optimal Power Flow (OPF) studies, in addition to the items listed for the PF and in order to achieve the objective functions. In this paper has been used cost of generator fuel, acti...

متن کامل

Gaussian Bayesian Network Modeling to Improve Spatial Growth Estimates of Heterogeneous Forests

An approach is presented for improving the spatial estimation of leaf area index (LAI) of a heterogeneous forest by integrating the Physiological Principles Predicting Growth (3-PG) model output with the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. LAI was chosen as the variable of interest because leaf area is the exchange surface between the photosynthetically acti...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Bayesian Estimates of Genetic Relationships between Growth Curve Parameters in Shall Sheep via Gibbs Sampling

The objective of this study was to estimate variance components and genetic parameters for growth curve parameters in Shall sheep. Studied traits were parameters of Brody growth model which included A (asymptotic mature weight), B (initial animal weight) and K (maturation rate). The data set and pedigree information used in this study were obtained from the Animal Breeding Center of Iran and co...

متن کامل

Risk Analysis of Operating Room Using the Fuzzy Bayesian Network Model

To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011